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We study the existence and stability of localized modes in the two-dimensional �2D� nonlinear Schrödinger/
Gross-Pitaevskii �NLS/GP� equation with a symmetric four-well potential. Using the corresponding four-mode
approximation, we trace the parametric evolution of the trapped stationary modes, starting from the linear limit,
and thus derive a complete bifurcation diagram for families of the stationary modes. This provides the picture
of spontaneous symmetry breaking in the fundamental 2D setting. In a broad parameter region, the predictions
based on the four-mode decomposition are found to be in good agreement with full numerical solutions of the
NLS/GP equation. Stability properties of the stationary states coincide with those suggested by the correspond-
ing discrete model in the large-amplitude limit. The dynamics of unstable modes is explored by means of direct
simulations. Finally, in addition to the full analysis for the case of the self-attractive nonlinearity, the bifurca-
tion diagram for the case of self-repulsion is briefly considered too.
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I. INTRODUCTION

In the recent years, experimental and theoretical studies of
atomic Bose-Einstein condensates �BECs� have drawn a
great deal of interest �1,2�. Many of these studies have been
dealing with macroscopic nonlinear structures that arise in
BECs, and often have counterparts in nonlinear optics �3�.
One of the appealing features of this research area is the
possibility to tailor desired geometric settings by designing
appropriate magnetic, optical, or combined traps that confine
the ultracold bosonic atoms. For this reason, the analysis of
the structure, stability and dynamical properties of nonlinear
matter-waves trapped in such geometries have become one
of central topics of the studies. The theoretical analysis is
enabled by the fact that a very accurate description of dilute
atomic BECs is furnished, in the mean-field approximation,
by the Gross-Pitaevskii �GP� equation, which is a variant of
the nonlinear Schrödinger �NLS� equation. The cubic nonlin-
earity in the GP equation originates from collisions between
atoms, which should be taken into account despite the rar-
efaction of the condensate. The NLS equation in this, as well
as in different but related forms, is also relevant to a variety
of applications in nonlinear optics and other areas �3–5�.

Among the trapping configurations available to current
BEC experiments, one that allows direct observation of fun-
damental manifestations of the intrinsic nonlinearity is the
double-well potential �DWP�. Its prototypical realization is
provided by a parabolic �harmonic� trap combined with a
periodic potential, which can be created, as an “optical lat-
tice” �OL�, by the interference of laser beams illuminating
the condensate �1,2,4�. The DWP was realized experimen-
tally in �6�, using an optical dipole trap to induce the har-
monic trap. The experiments reported in Ref. �6� had re-
vealed a variety of important effects, including tunneling and
Josephson oscillations in the case of a small number of at-
oms, as well as the macroscopic quantum self-trapping lead-
ing to a stable asymmetric partition of atoms between the

wells for a sufficiently large number of atoms, which is a
manifestation of the spontaneous symmetry breaking �SSB�
induced by the nonlinearity. Subsequent works have used the
double-well setting for further fundamental studies, includ-
ing, in particular, the dynamics and interactions of dark soli-
tons �7,8�. DWPs have also inspired theoretical studies of
various problems, such as finite-mode reductions, exact ana-
lytical results for specially designed shapes of the potential,
quantum effects �9–17�, and a nonlinear DWP �alias a
double-well pseudopotential�, which is induced by the spa-
tial modulation of the nonlinearity coefficient, rather than the
use of the linear potential �18�. It is relevant to mention that
DWPs have also been studied in the context of nonlinear
optics, including twin-core self-guided laser beams in Kerr
media �19� and optically induced dual-core wave guiding
structures in photorefractive crystals �20�.

The aim of the present work is to extend the analysis of
the DWP, and SSB effects in such settings, to a two-
dimensional �2D� geometry. Unlike previous studies of the
trapping of quasi-2D BECs under the combined action of
harmonic traps and optical-lattice potentials �21�, we con-
sider a symmetric set of four wells, which is the most natural
configuration that allows the study of the SSB in situations
where the genuine 2D nature of the system plays a critical
role. It is also the natural 2D extension of the above-
mentioned two-well settings, considered earlier extensively,
both in the theory �9–18,20� and experiment �6�. The 2D
four-well BEC-trapping configuration can be created as the
combination of an isotropic parabolic magnetic trap, or a
similar optical dipole trap, and a cosinusoidal two-
dimensional OL in BECs, in a wide range of parameters �the
trapping frequency and lattice strength�. The same model can
be realized in optics too, using a bulk nonlinear medium with
a symmetric set of four embedded waveguiding channels.
Among various localized states that may be predicted in this
model, those featuring the SSB are of main interest, featuring
the physical manifestations of the nonlinearity in the previ-

PHYSICAL REVIEW E 80, 046611 �2009�

1539-3755/2009/80�4�/046611�9� ©2009 The American Physical Society046611-1

http://dx.doi.org/10.1103/PhysRevE.80.046611


ously unexplored 2D setting. Previously, SSB effects in the
2D geometry were studied for fundamental solitons and lo-
calized vortices in a different model, based on a set of two
parallel-coupled nonlinear cores carrying full two-
dimensional �22� or quasi-one-dimensional OLs �in the latter
case, the lattices in the two layers may be mutually parallel
�23� or perpendicular �24��. The results reported in the
present paper are completely different, due to the difference
in the structure of the linear couplings between the four po-
tential wells, which form a square set, on the one hand, and
between parallel 2D infinite layers, on the other.

As suggested by the aforementioned works that analyzed
the SSB and related effects in the one-dimensional �1D� ge-
ometry, a natural approach to the analysis of the four-well
configuration may be based on a Galerkin-type few-mode
truncation that reduces the 2D GP equation to a discrete sys-
tem, cf. Ref. �25�. In the framework of this approach, we
generate a bifurcation diagram, with the aim to predict a
global set of possible stationary states of the underlying four-
well system. Then, by way of a numerical solution of the
underlying GP equation, we verify that all the states pre-
dicted by the four-site reduction indeed exist in the underly-
ing continuum model. Furthermore, in the limit of strong
nonlinearity, the stability of the predicted modes coincides
with what is expected from the discrete model.

The paper is structured as follows. In Sec. II, we present
the model and the derivation of the four-mode approxima-
tion. Numerical results are reported in Sec. III. We report
complete bifurcation diagrams of possible stationary states
for both the underlying GP equation and for its four-mode
reduction. Comparison between them demonstrates very
good agreement, which provides for the justification of the
Galerkin approximation. In addition to the study of the exis-
tence and stability, evolution of unstable modes is explored
too, by means of direct numerical simulations. Finally, we
summarize the findings in Sec. IV, where we also discuss
possible directions for further work.

II. MODEL AND THE GALERKIN APPROXIMATION

We start by presenting the basic model in the quasi-2D
setting, namely, the NLS/GP equation in �2+1�-dimensions,
which can be written in the following dimensionless form
�1,2,4�:

i�tu = L̂u + s�u�2u − �u . �1�

If Eq. �1� is realized as the GP equation for a “pancake”-
shaped, i.e., effectively two-dimensional, BEC �see Ref. �26�
and references therein�, u�x ,y , t� is the normalized mean-
field wave function of the condensate, � the chemical poten-
tial, s=+1 and −1 correspond, respectively, to repulsive or

attractive interatomic interactions, and L̂ is the usual single-
particle operator,

L̂ = − �1/2�� + V�x,y� , �2�

with the 2D Laplacian, ���x
2+�y

2, and potential V�x ,y�. In
this work, we focus on the SSB and related effects in the 2D
space, for which the most natural setting, where the genuine

2D nature of the system plays a critical role, is provided by
the four-well potential, that may be taken in the following
form:

V�x,y� =
1

2
�2r2 + V0�cos�2kx� + cos�2ky�� , �3�

with r2�x2+y2. This potential directly corresponds to a
common experimental situation, being composed of the har-
monic trap of strength � and OL with strength V0 and period
d=� /k. Below, we present systematic results for the follow-
ing values of the parameters of the potential:

� = 0.21, V0 = 0.5, k = 0.3, �4�

which adequately represent the generic situation. Then, the

four lowest eigenvalues of operator L̂ with coefficients �Eq.
�4�� are found to be

�0 = 0.3585, �1 = �2 = 0.3658, �3 = 0.3731. �5�

Another physical realization of the model is possible in
nonlinear optics. If t is interpreted as propagation distance,
and −� as the respective propagation constant, Eq. �1� gov-
erns the transmission of �2+1�-dimensional beams in the
bulk medium with transverse coordinates �x ,y�, with poten-
tial �Eq. �3�� accounting for a transverse waveguiding struc-
ture induced via local modulation of the refractive index. In
optics, the self-focusing �s=−1� corresponds to ordinary
Kerr nonlinearity; the self-defocusing nonlinearity may be
possible too—in particular, in semiconductor waveguides
�27�, although in those cases it is accompanied by nonlinear
loss.

The four-mode approximation, based on the multimode
expansion of u�x ,y , t� and Galerkin-type truncation of
higher-order modes, is relevant in the present setting pro-
vided that the wave function in the case of the BEC, or the
beam in the optical waveguide, is sufficiently well trapped in
the four-well potential. In the case of the self-focusing non-
linearity, s=−1, it is also necessary to impose a restriction on
the normalized number of atoms �alias the total power of the
optical beam�; this quantity is defined by the norm of the
wave function, namely,

N =� � �u�x,y,t��2dxdy , �6�

and the restriction is: N�Ncr�5.84, so as to prevent the
collapse which is possible if N exceeds the critical value Ncr
�28� �the actual bifurcation diagrams for the case we study,
displayed in Fig. 3, indeed meet this condition�.

We denote the ground and first three excited eigenstates of

the linear operator L̂, which are shown in Fig. 1, as u0 and
u1,2,3. This set constitutes a natural minimum basis for the
Galerkin truncation in the set of four potential wells coupled
by tunneling. Eigenstates uj�j=0,1 ,2 ,3� can be chosen to be

real, given the Hermitian nature of the operator L̂. Then,
solutions to Eq. �1� for values of the chemical potential taken
in a vicinity of linear eigenvalues �5� may be approximated
by linear combinations of the four eigenfunctions.
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Actually, it is more convenient to use a linearly trans-
formed orthonormal basis, 	�0, �1, �2, �3
, which is built
of combined modes localized in different wells �see Fig. 2�,

��0 �1 �2 �3 � = �u0 u1 u2 u3 �T , �7�

where the transformation matrix is

T =
1

2�
1 1 1 1

− 1 − 1 1 1

− 1 1 1 − 1

1 − 1 1 − 1
� . �8�

Using the new basis, we define the four-mode decomposition
as

u�x,y,t� = 
j=0

3

cj�t�� j�x,y� , �9�

with time-dependent complex amplitudes cj�t�, j=0,1 ,2 ,3.
Substituting Eq. �9� into Eq. �1� and projecting onto basis
	�0 ,�1 ,�2 ,�3
, we derive, by means of straightforward al-
gebra, the following system of four ordinary differential
equations �ODEs�,

iċj = �̃ j + sAj�cj�2cj + s
k�j

Bjk�2�ck�2cj + ck
2cj

��

+ s
k�j

�Djk�ck�2ck + Djk�2�cj�2ck + cj
2ck

���

+ s 
k�l�j�k

Ekjl�2�ck�2cl + ck
2cl

�� + sG 
k�l�j�k

Ejkl�cj
�ckcl

+ cjck
�cl + cjckcl

�� + s 
k�l�m�k

k,l,m�j

ck
�clcm, �10�

with the summation performed over k , l ,m=0,1 ,2 ,3. To cast
these equations in a more compact form, we have defined

�
�̃0

�̃1

�̃2

�̃3

� =
1

4�
�0 − 4� �1 �3 �2

�1 �0 − 4� �2 �3

�3 �2 �0 − 4� �1

�2 �3 �1 �0 − 4�
��

c0

c1

c2

c3

� ,

�11�

where �0��0+�1+�2+�3, �1=�0+�1−�2−�3, �2��0
−�1+�2−�3, and �3��0−�1−�2+�3. Notice that, for the
particular eigenvalues �5�, one has �1=�2=�0−�3 and �3
�0. The nonlinear coefficients in Eq. �10� are given by over-
lap integrals, viz., An����n

4dxdy, Bmn����m
2 �n

2dxdy,
Dmn����m

3 �ndxdy, Elmn����l
2�m�ndxdy, G

����0�1�2�3dxdy, with l ,m ,n=0,1 ,2 ,3; these indices
must be mutually different wherever they appear in the co-
efficients attached to the nonlinear terms.

For our choice of the parameters of the potential, the over-
lapping between modes �i is weak �see Fig. 2�, therefore all
other overlap integrals are much smaller than the An’s. For
example, An=0.0585, n=0,1 ,2 ,3, B01=4.72	10−5, B02
=3.82	10−8, D01=−5.5	10−4, D02=5.17	10−6, E012=
−4.44	10−7, E013=5.17	10−6, and G=3.82	10−8. Other
overlap integrals are similar to the ones listed above due to
the symmetry of the �i’s. Neglecting these small overlap
terms leads to the following simplification of Eq. �10�,

iċj = �̃ j + Aj�cj�2cj, j = 0,1,2,3, �12�

in which the �̃ j’s are linear combinations of the cj’s as ex-
plained in Eq. �11�. It has been checked that this simplifica-
tion of the four-mode equations very slightly affects the ac-
curacy of the solutions, while it renders the identification of
various bifurcation branches significantly easier. Further-
more, this reduction is more useful, as we may use respective
solutions as inputs for generating numerical solutions of the
full GP system, as explained below. In general terms, what
can be said about the validity of the four-mode approxima-
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FIG. 1. �Color online� The wave functions of the ground state,
u0, and the first three excited states, u1, u2, and u3, for the four-well
potential of Eq. �3� with �=0.21, V0=0.5, and k=0.3. Note the
difference in the gray-scale �color, in the online version� bars in the
first and three others panels, related to the fact that the wave func-
tion of the ground state is positive, while the excited states feature
sign-changing patterns.
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FIG. 2. �Color online� Basis modes 	�0 ,�1 ,�2 ,�3
 that are
localized in each of the wells.
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tion is the following: as long as the chemical potential �
remains close to the first few eigenvalues �0-�3 of the linear
limit �i.e., low nonlinearity�, we expect the approximation to
be quite accurate. Furthermore, the wider the distance of
these eigenvalues from subsequent linear spectrum eigenval-
ues �upon suitable selection of the barrier height and inter-
well distance�, again the more accurate this approximation is
expected to be.

In this 2D setting, we seek for real and complex stationary
solutions to the ODE system. Substituting cj�t��
 j�t�ei�j�t�

into Eq. �12�, we split them into real equations for 
 j and � j,


̇0 =
1

4
�1�
1 sin��1 − �0� + 
3 sin��3 − �0�� , �13�

�̇0 = �� −
1

4
�0� − sA0
0

2 −
1

4
�1

	�
1


0
cos��1 − �0� +


3


0
cos��3 − �0�� , �14�


̇1 =
1

4
�1�
0 sin��0 − �1� + 
2 sin��2 − �1�� , �15�

�̇1 = �� −
1

4
�0� − sA1
1

2 −
1

4
�1

	�
0


1
cos��0 − �1� +


2


1
cos��2 − �1�� , �16�

with the equations for 
2,3 and �2,3 obtained by interchang-
ing the indices, 0↔2 and 1↔3, except for �0 and �1.

Looking for stationary solutions with constant amplitudes

 j, and phases � j which are integer multiples of �, we reduce
Eqs. �13�–�16� to a set of four algebraic equations for 
 j,
which can be used to derive a complete set of stationary
modes of the four-mode truncation. These were further used
as initial guesses to generate numerical solutions of the full
system of the GP equations. Moreover, our analysis of the
four-mode system indicates that nontrivial complex solutions
in this setting are possible in the form of discrete vortices,
i.e., solutions with phase sets � j =�j /2, j=0,1 ,2 ,3 �29�,
which have been studied in detail in Refs. �21,30� �we also
briefly consider them here�.

III. NUMERICAL RESULTS

A. Attractive interactions

We begin the presentation of results obtained from the
analysis of both Eq. �1� and the four-mode truncation, Eqs.
�13�–�16� for the case of the self-focusing nonlinearity, i.e.,
s=−1. To solve Eq. �1� numerically, we applied Newton’s
fixed point iteration method with tolerance 10−8. The basic
bifurcation diagram, presented in Fig. 3, displays the norm
�Eq. �6�� as a function of the chemical potential, � �or the
total power versus the propagation constant, in terms of the
optical waveguide�. The top left panel of Fig. 3 presents the
full numerically found diagram, which involves twelve real

and one complex solution branches �for the latter one, N is
the same as for one of the real branches, hence this branch is
not visible as a separate curve in the diagram�. The compan-
ion diagram in the top right panel is obtained from the sta-
tionary version of Eqs. �13�–�16�, demonstrating good agree-
ment with its numerical counterpart. Although the relevant
diagram contains �solely� the existence information regard-
ing the corresponding branches of solutions, we have
checked that the stability features of the four-mode picture
are in line with those of the full NLS/GP model, wherever
appropriate. The only feature that is missed by the four-mode
description concerns the oscillatory instabilities �discussed
below� that cannot be tracked within this reduced frame-
work.

The 12 real branches are labeled, mainly, according to
their relation to the respective populations of the four wells
�i.e., the distribution of the total norm between the wells�. To
fix the notation, we introduce a symbolic representation in
the form of 2	2 matrices, labeling different types of the
waveforms that arise in the diagram, as follows: A1�� 1 1

1 1 � ,
A2�� 1 1

−1 −1 �, A3�� −1 1
1 −1 �, A4�� 1 0

0 −1 �, B1�� 1 1
� � �, B2

�� 1 �
� 1 �, B3�� 1 −1

� −� �, C1�� 1 �
� � �, C2�� 1 �

1−� 1 �, C3�� 1 �
−1−� 1 �,

C4�� 1−� 1
1 −1−� �, and D1�� 1 1−�

−1−� −� �. In this representation, the
symbol 0 means that the particular well is not populated,
while +1 and −1 indicate it is populated with the phase of the
wave function equal to 0 or � respectively. The symbol �,
where 0��1, �i.e., � is a nonvanishing quantity much
smaller than 1�, denotes a small �but nonzero� population in
one of the wells. This symbol is also used to denote the SSB
effect, when the density peaks feature values �1��, which
are slightly different from those corresponding to �1. The
labeling is then defined as follows: branches A1-A4 have
equal amplitudes in all the wells which are designated as
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FIG. 3. �Color online� Top panels: norm N of numerically found
solutions of Eq. �1� �left�, and their counterparts predicted by the
four-mode approximation �right�, for the attractive nonlinearity �s
=−1�, as a function of chemical potential �. The bottom panels are
segments of the top left panel, given in order to clarify the details of
the relevant bifurcation picture. The �blue� solid curves and �red�
dashed curves denote stable and unstable solutions, respectively.
The meaning of branches is explained in the text, their profiles and
stability being detailed in Figs. 4–7.
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populated ones, branches B1-B3 feature two pairs of peaks
with different amplitudes, branches C1-C4 have three differ-
ent amplitudes, while D1 has all of its four peaks different.
The waveforms in the top rows of Figs. 4–7 display proto-
typical realizations of the relevant branches, and their stabil-
ity properties are illustrated, as a function of eigenvalue pa-
rameter �, in the bottom rows.

We will now explain in detail solutions appearing in the
full bifurcation diagram, starting from the linear limits �N
→0�. First, we look at the group of solutions related to
branch A1, as shown in the bottom left panel of Fig. 3. This
branch arises from the symmetric linear mode at �=�0, i.e.,
the ground state in the linear limit, u0. Accordingly, A1 fea-
tures four identically populated wells. The analysis demon-
strates that it is stable near the linear limit, but soon gets
destabilized, due to the emergence of branches C1 and B1,
through subcritical and supercritical pitchfork bifurcations,
respectively, around �=0.355. In other words, there are two
consecutive steady-state bifurcations, in the language of Ref.

�31�, in two different subspaces, in which one unstable solu-
tion, C1, collides with A1 and, simultaneously, a pair of ei-
genvalues emerges �in a subcritical pitchfork� on the real
axis for branch A1 with the decrease of �; then, a supercriti-
cal pitchfork takes place in another subspace, in which B1
retains only one real pair, while another pair passes through
the origin along branch A1. The actual “pitchfork” cannot be
visualized here in the usual manner, because any of the four
equivalent versions of B1 �obtained by the rotation through
� /2� have the same value of N, being thus represented by the
same curve in the graph. Branch B1, which is unstable due to
a pair of real eigenvalues throughout its existence domain,
features two of the wells on one side being less populated
than the other two. Configuration B1 becomes increasingly
more asymmetric as it deviates from A1. A noteworthy fea-
ture is shown by branch C1, which bifurcates from A1 at
almost the same place as B1: after having emerged, it tends
to be located on the left of A1, as are all other branches
bifurcating from A1. However, within a narrow interval of �,
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its norm decreases �dN /d��0� slightly before starting to
grow as usual �dN /d��0�. Naturally, when the norm de-
creases the solution is destabilized and then it remains stable
after the turning point, pursuant to the Vakhitov-Kolokolov
criterion �32�. Branch A1 is endowed with two identical pairs
of real eigenvalues by B1 and C1 upon their bifurcation
�which is shown as the dashed line in the bottom left panel of
Fig. 4�. When another different pair of real eigenvalues oc-
curs, it will be marked by a solid line. The dashed-dotted
lines denote the complex quartets of eigenvalues. This nota-
tion holds in Figs. 4–7. As N grows further, a subsequent
bifurcation, at �=0.3519, leading to the emergence of
branch B2, adds yet another real eigenvalue pair to A1; this
means that A1 possesses, in total, three real eigenvalue pairs
for sufficiently large values of N. Branch B2 features two
wells on the diagonal which are less populated than the other
two, and it is unstable, through two pairs of real eigenvalues,
near the point where it is created by the bifurcation from A1;
however, one of the pairs is eliminated by the emergence of
a new branch, C2, from B2 through a pitchfork shortly after-
wards. Branch B2 then remains unstable with one real pair,
while C2 �with three principal sites, one of which is of lesser
amplitude than the other two� is unstable due to two real
eigenvalue pairs.

The above description encompasses all branches of sta-
tionary solutions which can be traced back to the ground
state of the linear system. Detailed information for the cor-

responding profiles of the wave function, and the develop-
ment of the real eigenvalues associated to them, is presented
in Figs. 4–6.

Next we turn to the states originating from the second
linear mode, as shown in the bottom right panel of Fig. 3.
Branch A2 starts from the respective eigenvalue, �=�1
=�2, which pertains to the first and second �degenerate in the
linear limit� excited states. This branch emerges as an un-
stable one, carrying a real eigenvalue pair. The respective
wave-function profile features four wells populated with the
same absolute values of the amplitude, but opposite signs on
the two sides, see Fig. 4. Branch B3 emerges from A2
through a supercritical pitchfork at �=0.3623, lending an-
other real eigenvalue pair to A2. Similar to the case of B1 �as
it separates from A1�, in state B3 two wells on one side tend
to be less populated than the other two, as this branch moves
farther from A2. Branch B3 remains unstable through one
real eigenvalue pair, until getting stabilized by another pitch-
fork bifurcation, that takes place at �=0.3589; this bifurca-
tion simultaneously gives rise to a new unstable branch, D1,
that features different populations in all four wells. Notice
that both B3 and D1 pass through a Hamiltonian-Hopf bifur-
cation �alias the 1:1 resonance, in terms of Ref. �31��, which
means that, in the relevant parametric interval �0.3362��
�0.348 for B3, and 0.3444���0.3553 for D1�, B3 is de-
stabilized by a complex quartet of small eigenvalues, while
D1 remains unstable, but through one real eigenvalue pair
and a complex quartet �the dash-dotted lines in the bottom
right panels of Figs. 5 and 7 refer to this effect, i.e., the
presence of a quartet�.

Branch A4 bifurcates from the same linear mode as A2. It
is unstable near the linear limit due to a Hamiltonian-Hopf
bifurcation, but with the increase of N it becomes stable.
Branch A4 features a waveform in which only two wells
lying on the diagonal are populated, with the same amplitude
but opposite signs.

Branch A3 arises from the third excited linear mode at
�=�3. In this case, two wells on the diagonal are populated
with equal amplitudes, while in the other two the amplitudes
are of opposite signs. It is the unique stationary solution
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which remains stable across the entire bifurcation diagram
�despite the fact that it has three pairs of purely imaginary
eigenvalues with a negative Krein signature �33�, which in
principle, can give rise to Hamiltonian-Hopf bifurcations�.

Finally, branches C3 and C4, which are located slightly
below A2 in Fig. 3, correspond to a pair of states which arise
through a saddle-node bifurcation at some critical value of
the chemical potential ���0.348, for parameters of the
model chosen in the present case�. Branch C4 �the one with
higher values of N� is unstable through a real eigenvalue
pair, while C3 remains stable, except inside a short instability
interval, which is accounted for by a Hamiltonian-Hopf bi-
furcation.

In addition to the above real stationary states, we have
also found complex solutions in the form of vortices �21,30�.
A typical example of such a solution is shown in Fig. 8.
Throughout the regime of parameters considered herein,
such solutions have been found to be linearly stable.

It is interesting to note that, for all the solutions consid-
ered herein, in the large-N limit, taking into account the cri-
terion N�Ncr so as to prevent the onset of the collapse, their
stability characteristics coincide with what can be suggested
by the discrete nonlinear Schrödinger �DNLS� model consid-
ered in Ref. �29� �see also Refs �34,35� for the corresponding
1D and 3D stability results�. This is natural since effectively
the four-mode reduction provides a four site, analog of the
DNLS model with coupling �1 and on-site nonlinearity co-
efficient An. Since the analysis of �29� is based on a few-site
reduction of the full �infinite lattice� model close to the an-
ticontinuum limit �i.e., a strongly nonlinear limit�, we expect
that in the large-N limit the stability properties should be as
expected from the full model. For the small-N �small nonlin-
earity� limit, the generalization is not immediate since the
crosstalk among lattice sites plays a significant role and the
finite size of the four-well setting may bear differences from
the situation where more neighbors are involved. Gross fea-
tures of the large-N limit are that, whenever two adjacent
sites are in-phase, a real eigenvalue pair is expected to
emerge due to their interaction, while whenever such sites
are out-of-phase, the relevant eigenvalue is expected to be
imaginary �36�, but with a negative Krein signature �29�,
which, as mentioned above, implies a potential for a
Hamiltonian-Hopf bifurcation. It should also be noted that,
in the limit of the infinitely extended lattice, it is naturally
expected that the asymmetries observed herein in many of
the branches will disappear �i.e., the amplitudes in different
wells will be equal�—see also a relevant discussion in Ref.
�37�.

B. Repulsive interactions

We now briefly discuss the case of the self-defocusing
nonlinearity, which corresponds to s=+1 in Eq. �1�, with the
objective to highlight its similarities with and differences
from the case of the attractive interactions. The bifurcation
diagram for the model is displayed in Fig. 9.

The solutions are labeled so as to match the self-focusing
case, by means of the appropriate staggering transformation
�38�. The latter effectively converts the defocusing nonlinear-
ity into a focusing one by changing the relative phase of
nearest-neighbors from 0 to � and vice versa, while preserv-
ing the relative phase of next-nearest neighbors. In this way,
each solution in the self-defocusing case is linked to its
counterpart in the self-focusing model through this transfor-
mation. Following this relation, and adopting the same ma-
trix symbolic representation as used for the focusing case in
Sec. III A, the branches of solutions are labeled as follows:
A1�� −1 1

1 −1 �, A2�� −1 1
−1 1 �, A3�� 1 1

1 1 �, A4�� −1 0
0 1 �, B1

�� −1 1
� −� �, B2�� −1 �

� −1 �, B3�� −1 −1
� � �, C1�� −1 �

� −� �, C2

�� −1 �
1−� −1 �, C3�� −1 �

−1−� −1 �, C4�� −1+� 1
1 1+� �, and D1�� −1 1−�

−1−� � �.
Thus, in this case, the symmetric ground state of the sys-

tem is A3, which is stable for arbitrary values of N. Branch
A2 is immediately unstable, starting from the linear limit. B3
bifurcates from A2 and remains unstable before getting sta-
bilized through giving birth to D1 �and then becoming desta-
bilized again�. Branch A1 is stable near the linear limit, but is
subsequently destabilized due to bifurcations that give rise to
B1 and C1, and an additional real eigenvalue pair arises at a
higher value of N due to the emergence of B2, from which
another new branch, namely, C2, arises in turn. Branches C3
and C4 exist for a while �when N is large enough�, and then
collide at �=0.389 �for the values of parameters adopted
herein�. The types of the bifurcations, the emergence of the
corresponding solutions, and the corresponding stability
properties were found to be in direct correspondence to the
case of the self-focusing nonlinearity, provided that one takes
into account the staggering transformation relating the self-
repulsive and attractive models as indicated above.

C. Dynamics

We now proceed to investigate the time evolution of un-
stable states in the model with the self-focusing nonlinearity.
To this end, for each unstable branch, a small perturbation is
added as suggested by the most unstable eigenmode of the
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linearization near the original stationary solution, at �
=0.335. We have adopted a fourth-order Runge-Kutta
method in order to monitor the dynamical evolution of the
system with a time step �t=0.001. Results of the simulations
are presented in Fig. 10.

Panel �a� shows the behavior of solution A1, which, as a
result of the instability, starts oscillating between a state
where all four wells are populated and one in which only two
diagonal wells are not empty. Panel �b� depicts a periodic
oscillatory behavior of A2, also between four and two popu-
lated sites, but in this case the continuously populated sites
are adjacent to each other. Unstable mode A4 �panel �c��
features only two nonempty wells, with the symmetry-
breaking instability resulting in the oscillating enhanced
population of one of the two. As explained in Sec. III A,
modes B1, B2, and B3 have two very weakly populated
wells, in comparison with the other two. Since the dynamics
is plotted in Fig. 10 by means of isosurface �u�x ,y , t��2=k,
where k is half the maximum density at t=0, the evolution in
the weakly populated wells is not visible �which indicates
that they play a minor role in the dynamics�. Panel �d� shows
that mode B1 features SSB similar to that of A4, but between
adjacent sites. On the other hand, modes B2 and B3 appear
to be mildly oscillating between the two dominant wells
roughly periodically, as shown in panels �e� and �f�. Mode
C2 �in panel �g�� oscillates between three and two populated
sites �the seemingly empty well is actually a weakly popu-
lated one, similarly to the modes of type B, see above�.
Mode C3, whose weak instability is caused by a quartet of
eigenvalues, is also “breathing” within the respective set of
three predominantly populated wells, as shown in panel �h�.
Finally, mode C4 �shown in panel �i�� involves a complex
symmetry-breaking pattern, with different numbers of wells
populated at different times, while mode D1 �panel �j�� os-
cillates between three–and two-well asymmetric configura-
tions.

IV. CONCLUSION

In this work, we have studied stationary and dynamical
properties of the two-dimensional nonlinear Schrödinger/
Gross-Pitaevskii equation, which includes the four-well lin-
ear potential, with both signs of the nonlinearity, attractive
and repulsive. The model applies to a pancake-shaped �pla-
nar� BEC, where the four-well potential can be generated by
a combination of the harmonic trap and optical lattice �OL�.
The same model describes the propagation of an optical
beam in a bulk nonlinear medium with an embedded four-
channel guiding structure.

Our semianalytical approach was based on the four-mode
truncation, which strongly simplifies the identification of sta-
tionary solutions. Using this approximation, we were able to
find, first, four symmetric, and antisymmetric linear modes
�two of which are identical�, and then all branches of asym-
metric solutions emerging from them, through the SSB
�spontaneous-symmetry-breaking� mechanism, in the model
with the self-focusing nonlinearity. The linear-stability analy-
sis demonstrated how pitchfork and saddle-node bifurcations
change the stability of the solution branches. We have also
shown that, in the limit of the strong nonlinearity, properties
of localized modes in the model with either sign of the non-
linearity can be understood on the basis of earlier known
results pertaining to the corresponding discrete NLS model.
In fact, the identification of the SSB modes specific to the
four-well configuration in the 2D geometry presents new
physical results obtained in this work. We have also de-
scribed the evolution of all unstable solutions, directly ob-
serving the emergence of symmetry-breaking instabilities
and the emergence of respective oscillating solutions.

It would be interesting to investigate how these four-site
configurations may be embedded into a larger potential pat-
tern, with 9 or 16 wells, and examine whether the SSB
modes, considered in this work, are sustained �or how they
are modified� within the larger pattern. In this context, a
conjecture that calls for a proof is that, in the infinite periodic
lattice formed by potential wells, the nonlinearity can sup-
port 2D solitons and localized vortices with various symme-
tries, but not confined asymmetric states. This conjecture is
suggested by results reported for infinite linear �22–24,39�
and nonlinear �40� potential lattices. Eventually, it may be
relevant to extend the analysis of the SSB to the 3D space,
the most natural respective setting being that based on a set
of eight potential wells. The corresponding version of the
NLS equation is not relevant in the context of nonlinear op-
tics, but it remains a meaningful �and actually challenging�
model for the BEC physics.
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FIG. 10. �Color online� The spatiotemporal evolution of un-
stable states, represented by the respective density isosurface,
�u�x ,y , t��2=k, where constant k is taken as half the maximum value
of the density distribution at t=0. The results are arranged as fol-
lows. Top panels: A1, A2, A4; middle panels: B1, B2, B3; bottom
panels: C2, C3, C4, D1.
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